We also get many properties about Poisson action, to unify with the conclusion of actions of Poisson Lie groups on Poisson manifolds in form. 我们还得到了泊松作用更多的性质,从形式上与泊松李群在泊松流形上的泊松作用的结论相统一。
Lie Algebra on The Poisson Manifold and Poisson Symplectic Lie Group Poisson流形上李代数与Poisson辛李群的讨论
In this paper, one show that finite W-algebras are so-called transverse poisson structure on semi-simple Lie algebras. 证明了物理学中的有限W-代数是半单Lie代数上的横截Poisson结构。
The advantages of this scheme lie in its accuracy and stability for modeling any Poisson's ration materials, small grid dispersion and grid anisotropy and having no terms containing spatial derivatives. 该公式的差分格式精度高、勿需对弹性常数空间微分,对任意泊松比都稳定并且由网格引入的频散和各向异性较小。
Induced by the symplectic structure, we have obtained the Poisson bracket and the Lie algebra for the conservative quantities with respect to the Poisson bracket. 我们由其上的辛结构定义了其上的Poisson括号,并求出了在这个括号意义下,守恒量所构成的李代数。