We study both local linear finite square well system and nonlinear Morse potential system. 我们研究了局域线性的一维无限深方势阱体系以及非线性的一维Morse势体系。
Two new methods for solving the problem of one dimensional square well are presented in this paper. 本文给出两种数值求解一维方势阱问题的新方法。
Therefore, in part one, the highly asymmetric hard sphere and square well model fluids were simulated. 因此,在第一部分,本文将对高度非对称模型流体进行模拟,并建立实用的状态方程,为开发更合理的流体的宏观模型提供了宝贵的‘实验数据’和模型框架。
A modified square well analytical radial distribution function was derived. 由改进的方阱位能模型径向分布函数的解析式,结合统计热力学的方法关联纯物质的表面张力。
The molecular dynamic data of compressibility factor are used to regress this two localized radial distribution functions. Therefore, a new equation of state of square well fluids is established. 利用已知的压缩因子分子动力学模拟数据,回归得到了这两个径向分布函数,从而建立了一个新的方阱流体状态方程。