System of Right Linear(RL) Equations over a Non-Commutative Principal Ideal Domain 非交换主理想整环上的右线性(RL)方程组
This paper proves the existence theorem of the system of basic solutions for the right homogeneous linear equation sets over a non-commutative principal ideal domain R and gives the representation of the solutions for the right linear equation sets over R. 证得非交换主理想整环R上右齐次线性方程组基础解系存在定理,给出R上右线性(RL)方程组解的表示。
An Inverse Problem of a System of Right Linear(RL) Equations over Skew Fields 体上右线性(RL)方程组的反问题
In this we give the bordered matrix method of finding weighted generalized inverses A [ 1, W4 ] of quaternion matrix A, and obtain solutions of consistent right linear equations over the quaternion field. 本文给出了求四元数矩阵A的加权广义逆A~([1,W4])的加边矩阵方法,并且得到四元数体上相容右线性(RL)方程组的解式。
Sample volume and response have assumed all right linear relation in the range of ( 1 ~ 20 )× 10 - 6 ppm. 在(1~20)×10-6范围内进样量和响应值呈良好线性关系。