A kind of ordinary difference equation that can be transferred to Euler equation, often appears in polar coordinates solution of elastic problems. 在弹性力学问题的极坐标解答中,经常会遇到一类可转化为欧拉方程的常微分方程。
The mathematical expression of this model is a second order non linear ordinary difference equation. 该模型的数学形式是一个非线性二阶常微分方程,利用有限差分方法进行求解。
The global stability of the positive equilibrium in this system is expounded by using the stability and qualitative theory of the ordinary difference equation, then the existence, the uniqueness and the global stability of the limit circle are proved, thus some former conclusions are extended. 利用微分方程稳定性和定性理论讨论该系统的正平衡点的全局稳定性问题,并得到了极限环的存在唯一性及其全局稳定性,推广了已有的一些结论。
The General Formula of Particular Soution of Nonhomogeneous Linear Ordinary Difference Equation(ODE) with Constant Coefficient 求非齐次高阶常系数线性常微分方程的特解的一般公式
Periodic solution of two-order ordinary difference equation 二阶常微分方程的周期解