英语缩略词“BOW”经常作为“Bag Of Words”的缩写来使用,中文表示:“词袋”。本文将详细介绍英语缩写词BOW所代表英文单词,其对应的中文拼音、详细解释以及在英语中的流行度。此外,还有关于缩略词BOW的分类、应用领域及相关应用示例等。
“BOW”(“词袋)释义
英文缩写词:BOW
英文单词:Bag Of Words
缩写词中文简要解释:词袋
中文拼音:cí dài
缩写词流行度:439
缩写词分类:Computing
缩写词领域:Software
以上为Bag Of Words英文缩略词BOW的中文解释,以及该英文缩写在英语的流行度、分类和应用领域方面的信息。
英文缩略词BOW的扩展资料
In most of the research on topic tracking, texts are represented in " bag of words ". 话题追踪的很多研究工作都是使用Bagofwords来表示文本。
It is relatively simple and easy to implement and has a fast identification speed. Secondly, on the basis of the traditional coding of the Bag of Words model, this thesis proposes a method which based on sparse coding representation of the models local image feature descriptor. 其次,在研究传统词包模型中编码方式的基础上,本文提出了一种基于车型图像局部特征描述子的稀疏编码表示方法。
This is because traditional text representation methods are based on word of bag model ( WOG ), which relies on matching between words or phrases. 这是因为传统的机器学习方法大多数是基于词袋(BOW)(Bagofwords)模型,即依靠词或短语之间的匹配,面对词汇的多样性、多义性,它就显得无能无力了。
BoW ( Bag of Words ) technology originated in document retrieval systems and got a great success. SIFT feature extraction technique was proposed by the D.G.Lowe 1999, concluded in 2004, and obtained good performance in the image retrieval area. BoW技术起源于文档检索系统,并在文档检索领域取得了成功;SIFT特征提取技术由D.G.Lowe1999年提出,2004年完善总结,在图像检索领域获得了不错的检索效果。
The Bag of Words framework based on SIFT was analysised. The support vector machine was used for feature selection point of the visual vocabulary. The experiments show better performance than the k-means clustering algorithm. 以此为基础,研究了SIFT的词袋(BOW)算法框架,通过支持向量机选择视觉词汇的特征点,实验表明,性能优于k均值聚类算法。
上述内容是“Bag Of Words”作为“BOW”的缩写,解释为“词袋”时的信息,以及英语缩略词BOW所代表的英文单词,其对应的中文拼音、详细解释以及在英语中的流行度和相关分类、应用领域及应用示例等。