In this paper, The existence and the uniqueness of the solution of a class of the nonlinear integral differential equation group with par - tial reflecting boundary conditions are considered. 本文研究了一类具部分反射边界条件(RBC)的非线性积分一微分方程组解的存在性及唯一性。
Solutions of quasilinear mixed boundary problems for the same parabolic and elliptic partial differential equations are interpreted as solutions of a kind of backward stochastic differential equations, which are associated with the classical Ito forward stochastic differential equations with reflecting boundary conditions. 关于某些抛物型和椭圆型偏微分方程的混合边界问题的解被表示为一类联系于Ito正向反射边界随机微分方程的反向随机微分方程的解。
The Asymptotic Spectrum and Accumulation of Transport Operator in Slab Geometry under Partially Reflecting Boundary Conditions(RBC) 板模型具部分反射边界条件(RBC)的迁移算子的渐近点谱及其聚点
In the framwork of the graded quantum inverse scattering method ( QISM ), we obtain the eigenvalues and eigenvectors of supersymmetric t-J model with reflecting boundary conditions in FBF background. The corresponding Bethe ansatz equation are also obtained. 在阶化量子反散射的框架中,得到FBF背景下,带反射边界条件(RBC)的超对称t-J模型的本征值和本征矢,及相应的Betheansatz方程。
Algebraic Bethe Ansatz for the Supersymmetric t-J Model With Reflecting Boundary Conditions(RBC) in FBF Background 在FBF背景下带反射边界条件(RBC)的超对称t-J模型的代数Betheansatz方法