Symmetric Positive Definite(SPD) Matrices and the Determining Criterions for Non-singular GM-matrices 对称正定(SPD)矩阵与非奇异GM-矩阵的判定
In this paper, we study the problem about the symmetric positive definite solution to a class of mixed-type Lyapunov matrix equations. 对一类两点边值问题给出了对称正解的两种单调迭代格式,主要工具是单调算子迭代技巧。
In the matrix theory, n-order real symmetric positive definite matrix is important to the study of inequality. n阶实对称正定(SPD)矩阵在矩阵理论中,对它的不等式研究具有有十分重要的意义。
It is equivalent to the conjugate residual method ( CR ) in the case of symmetric positive definite. 在处理对称正定(SPD)问题时,它等价于共轭残量(CR)法。
If A is a symmetric positive definite matrix, then the quadratic form x ~ TAx can be written as a sum of squares. Equivalently, A is a sum of rank one matrices VV ~ T. 若A是对称正定(SPD)矩阵,则二次型x~TAx能写成平方项的和,即A是秩为1的矩阵VV~T的和。