In this paper, we study the asymptotic theory of two typical dissipative infinity dynamic systems in mathematics and physics. 本文研究了数学物理中两类典型的具有耗散性的无穷维动力系统的渐近性理论。
The definitions of the isochronous center and the quasi - isochronous center at infinity for differential systems are introduced. 给出了微分系统无穷远点等时中心、拟等时中心的定义。
On the Singular Points at Infinity of Second Order Planar Systems 平面二次系统的无穷远奇点
Robust H - infinity control for uncertain singular discrete systems 不确定广义离散系统的鲁棒H-infinity控制
The Centers and Quasi-isochronous Centers at Infinity for a Class of Differential Systems 一类微分系统无穷远点的中心与拟等时中心