In this paper, conjugate separability problem in a finitely generated nilpotent group is researched. 研究了有限生成(FG)的幂零群中元素的共轭分离问题。
We also obtain that for a finitely generated transcendental semigroup, there is a best generating set. 此外,超越整函数半群有着唯一的最小生成元集。
Applying the theorem above, it is dealt with finitely generated modules and vector subspaces arisen from the study of equivariant singularity theory and equivariant bifurcation theory. 本文应用该定理讨论出现在等变奇点理论及等变分歧理论中的有限生成(FG)模与向量子空间,将已知的一些结果推广到更一般情形。